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Abstract. In moving camera videos, motion segmentation is often per-
formed on the optical flow. However, there exist two challenges: 1) Cam-
era motions lead to three primary flows in optical flow: translation, ro-
tation, and radial flow. They are not all solved in existing frameworks
under Cartesian coordinate system; 2) A moving camera introduces 3D
motion, the depth discontinuities cause the motion discontinuities that
severely confuse the motion segmentation. Meanwhile, the mixture of the
camera motion and moving objects’ motions make indistinctness between
foreground and background. In this work, our solution is to find a low
order polynomial to model the background flow field due to its coher-
ence. To this end, we first amend the Helmholts-Hodge Decomposition
by adding coherence constraints, which can handle translation, rotation,
and radial flow fields under a unified framework. Secondly, we introduce
an Incoherence Map and a progressive Quad-Tree partition to reject mov-
ing objects and motion discontinuities. Finally, the low order polynomial
is achieved from the rest flow samples on two potentials in HHD. We
present results on more than twenty videos from four benchmarks. Ex-
tensive experiments demonstrate a better performance in dealing with
challenging scenes with complex backgrounds. Our method improves the
segmentation accuracy of state-of-the-art by 10% ∼ 30%.

1 Introduction

With rapid increase of mobile cameras (handhold camera, wearable camera, etc),
video analysis faces more challenges. One of them is that appearance motions are
no longer simple in such scenes where multiple objects could move independently,
in addition to the camera motion. It is named 3D motion. A common scheme in
3D motion segmentation is to use optical flow or trajectories as a cue. As optical
flow can be directly used for clustering or to compensate for the camera motion,
the pixelwise model are often used for segmentation [1] [2] [3] [4].

However, here are two major drawbacks of using optical flow. 1) Camera
motions in 3D scene cause three primary motion flows in optical flow: translation,
rotation, and radial flow. The well accepted interpretation of the flow vector is
based on Cartesian coordinate system with two bases x, y. Then, a motion vector
in 2D is denoted by u, v. For translation, it can be interpreted as an invariant
u/v that depends on depth and camera motion only. But for rotation and radial
flow, the u/v changes with x, y changing on image plan too. Then, there is no
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invariant to interpret them under the Cartesian coordinate system. For example,
Fig.1.(b) and Fig.4.(b) involve the radial flow and rotation, respectively. The
direction and magnitude of flow vectors are changing w.r.t the change of x, y.
To our best knowledge, no scheme could well handle all these three flows based
on dense flow field. 2) Optical flow depends on the object’s distance from the
camera. A varied depth causes a different magnitude of the flow. This may make a
clustering algorithm to label backgrounds at different depths as separate objects
although they are static in the real world. In Fig.1.(b), there is a significant
motion discontinuity between the stopped car and the far away background. To
handle motion discontinuities, other works need auxiliary information (e.g. color,
edge energy) to merge small segments into one as a post-processing.

As the flow filed of the static background (inlier) in optical flow is caused
by the camera motion, it should be globally coherent. But, existing optical flow
algorithms give much error at the depth discontinuity, and make those flows
incoherent with the camera motion. For a moving object in 3D scene, its flow
field (outlier), however, is caused by not only its own motion but also the camera
motion. So, an outlier consists of both incoherent and coherent flows w.r.t. the
camera motion. Thus, the coherence in optical flow can be a cue for 3D motion
segmentation. In this work, our object is to find an appropriate polynomial for
inlier modeling according to its coherence, which requires no prior knowledge
and post-processing. To this end, the first challenge is how to put three primary
motion flows into one scheme. Helmholtz-Hodge decomposition (HHD) was ini-
tially developed to characterize the rotation and radial flow by curl-divergence
regularization. HHD can decompose an arbitrary motion field into curl-free and
divergence-free components through finding their unique corresponding scalar
and vector potentials no matter the motion is coherent or not. To ensure the
coherence, we amend conventional HHD by adding two constraints: piece-wise
smoothness, and global minimization. Nevertheless, the obtained two potentials
consist of the major coherent inlier and a little coherent outliers. To better
estimate inlier, we introduce an Incoherence Map (IM) by subtracting the pro-
jection of two potentials from optical flow. It intuitively depicts the outliers and
motion discontinuities. Moreover, a progressive Quad-Tree partition is proposed
for precisely labeling outliers and motion discontinuities on IM, and rejecting
them from two potentials. Therefore, outliers is completely excluded in inlier
estimation. The motion discontinuities are also excluded, but do not affect the
coherent flows at the fields with different depths. Afterwards, our object can be
achieved by approximating the low order polynomials using rest samples on two
potentials.

Other approaches for 3D motion segmentation can be categorized as (1) using
optical flow, and (2) trajectories clustering. Chen and Bajic [1] proposed an out-
lier rejection filter that explicitly filters motion vectors by checking their similar-
ity in a pre-defined window. Chen and Bajic [2], and Qian and Bajic [3] proposed
a joint global motion estimation, which iteratively update the inlier model by
segmenting outliers out. Although these methods have achieved great progress
in dealing with independent motions, they are very likely to over-segment ob-
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Fig. 1. (a) A traffic scene where two kids are running from left to right. A car stops
at the left side. The camera is moving towards the stop line. (b) The original optical
flow. Besides two outliers, here exists a significant flow discontinuity between the left
side car and far away background. (c) The potential of divergence-free component. (d)
The potential of curl-free component. (e) Incoherence Map IM. (f) Progressive Quad-
Tree Partition on IM to reject the outliers, motion discontinuities, and noise. (g) The
estimated inlier. It has been rather coherent. (h) Result of 3D motion segmentation. It
detects outliers only.

jects due to the motion bias introduced by camera motion [2]. Narayana et al.
[4] proposed a method using the direction of motion flow only. It works well
for 2D translation, but has difficulty with rotation and radial flow. Brox and
Malik [5] segment trajectories by computing the pairwise distances between all
trajectories and finding a low-dimensional embedding using spectral clustering.
Later, Ochs and Brox [6] improved the spectral clustering by using higher order
interactions that consider triplets of trajectories. Elqursh and Elgammal [7] pro-
posed an online extension of spectral clustering by considering trajectories from
multiple frames. But, they require a post-processing for merging. Kwak et al. [8]
use a Bayesian filtering framework that combines block-based color appearance
models with separate motion models for segmentation. However, they require a
special initialization procedure in the first frame.

In contrast, our method is a frame-to-frame scheme, requires neither tra-
jectories from multiple frames nor special initialization and post-processing. In
additional, it handles all three primary flows in one scheme, and works on a
rather wide bank of videos.

2 Modeling inlier of optical flow

2.1 Models of optical flow and 3D motion segmentation

Let X,Y, Z denote the horizontal, vertical and depth axes in Cartesian coordi-
nate of a real world, and let x, y denote the corresponding coordinates in the
image plane. The image plane is located at the focal length: Z ′ = f . In 3D scene,
the camera motion has two components: a translation T = (TX , TY , TZ) and a
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rotation R = (RX , RY , RZ). They are always coherent (continues and smooth in
both direction and magnitude) in a short time interval △t. Then, the resulting
2D optical flow u and v in the x and y image axes are [9]
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]
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Beside constant f , camera motion T and R, and image coordinates x and y,
it is noted from Eq.(1) that u and v are functions with depth Z too. Thus, an
ideal optical flow field (OF) in 3D scene is a collection of 2D OFs of n static
planar surfaces in background (named inlier, Fin) and OFs of m foreground
moving objects (named outlier, Fout). We can formulate them as

OF = Fin + Fout, (2)

where Fin = [Fin(B1) Fin(B2) . . .Fin(Bn)], Fout = [Fout(O1) Fout(O2) . . .Fout(Om)],
Bi denotes a static planar surface and Oj denotes a moving object. Please note
that Fout(Oj) is incoherent with Fin because its own motion does not match
the camera motion.

Theoretically speaking, each Fin(Bi) or Fout(Oj) could be approximated by
a polynomial. Thus, entire OF could be also approximated by a high order
polynomial P .

OF = [Fin(B1) . . .Fin(Bn) Fout(O1) . . .Fout(Om)] ≈ P , (3)

where high order is required due to the outliers, motion discontinuities caused
by depth discontinuities, and noise.

To segment 3D motion, many studies tried to model outliers directly. Moving
objects, however, can be either rigid or non-rigid, outlier modeling is a nontrivial
task. Instead of complex modeling and auxiliary constrains, we model inlier by
a general approach in this work other than modeling outliers. As the inlier is
caused by camera motion, each Fin(Bi) must be coherent, and can be modeled
by a simple polynomial Pi. But Eq.(1) shows Fin(Bi) is a function with Z in
translation and radial flow fields. Modeling Fin is still difficult.

Most optical flow algorithms share a common assumption of local motion
smoothness, and apply an optimization to minimize the global error. The dif-
ference among them only focuses on implementations of the optimization. This
strategy is ideally designed for the motion of one planar surface. But, it is also
applied on the object’s boundaries, where depths vary, because algorithms do
not know where the depth discontinuities are. For inlier Fin, at the place where
depth variation is not significant, optical flow algorithms give rather smooth flow
field and connect motion fields of two adjacent planar surfaces. By the same to-
ken, algorithms often give much errors at the place having significant depth
discontinuity. These incorrect flows are incoherent with camera motion, but are
minority in Fin. Then, Fin can be reformulated as

Fin = a1F
coherent
in + b1F

incoherent
in , a1 >> b1, (4)
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where a and b are quantity coefficients.
The primary reason of the moving objects standing out in a moving camera

video is that their motions are incoherent with camera motion and result in
significant variances on optical flow field OF . Besides, Fout is partially caused
by camera motion as well, which is coherent with Fin, but is minority. Now,
Fout can be reformulated as

Fout = a2F
coherent
out + b2F

incoherent
out , b2 >> a2. (5)

One major difficulty in 3D motion segmentation is induced by the mixed flow
field of camera motion and moving objects’ motions. These dependent motions
lead to indistinctness of the difference between inlier Fin and outliers Fout. To
segment outliers from inlier, our object, therefore, becomes finding an appropri-
ate polynomial

P ′ ≈ a1F
coherent
in + a2F

coherent
out , (6)

which rejects incoherence (b1F
incoherent
in + b2F

incoherent
out ) in inlier and outliers.

2.2 Three primary motion flows and their potentials

Equation (1) shows motion vectors in OF caused by camera motion can be
decomposed into two components: VT and VR representing camera translation
and rotation, respectively.

VT =

[

xTZ − fTX

Z
,
yTZ − fTY

Z

]T

, VR =
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f
+ xy

RX

f
− fRY
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RX

f
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RY

f
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.

To simplify analysis, motion vectors caused by camera motion can be further
decomposed into three primary components:

1. VTX
caused by camera translation on image plan X(x, y):

VTX
=

[

−
fTX

Z
,−

fTY

Z

]

, arctan(VTX
) =

TX

TY

, |VTX
| =

f

Z

√

T 2
X + T 2

Y . (7)

It is noted that the direction of flow is independent on the depth Z, and
the magnitude is inversely proportional to the depth Z. Eq.(7) indicates
that if the depth variation is not significant in 3D scene (e.g. the static
background is rather far from the camera), the coherence of both direction
and magnitude is preserved. If background is pretty close to the camera, the
depth discontinuity will lead to motion discontinuity that is incoherent with
camera motion.

2. VTZ
caused by camera translation along Z axis. It presents a radial flow field

with the origin at the focus-of-expansion.

VTZ
=

[

xTZ

Z
,
yTZ

Z

]

, arctan(VTZ
) =

x

y
, |VTZ

| =
TZ

Z

√

x2 + y2. (8)
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It is noted that the flow direction is dependent on neither the depth Z nor
camera motion, but only determined by image plan coordinates x and y. The
magnitude is also inversely proportional to the depth Z. Analogically, the
coherent flow field is maintained at the place having less depth variation. But,
the incoherence occurs at the place having significant depth discontinuity.
Please see Fig.1.(b) as an example.

3. VR caused by camera rotation along an axis parallel with the camera optical
axis Z. Please note that camera rotation, which rotates along image axes x
or y in a short time interval △t, could be simulated as a translation. In this
work, we consider camera rotation perpendicular to the image plan only.

VR = [yRZ ,−xRZ ] , arctan(VR) = −
y

x
, |VR| = RZ

√

x2 + y2. (9)

It is noted that both direction and magnitude of VR are independent on
depth Z, but dependent on image plan coordinates x and y. This indicates
that a 3D motion segmentation can reduce to a 2D motion segmentation
while camera solely rotates perpendicular to the image plan. Obviously, the
coherence of flow field is preserved.

Consequently, an arbitrary optical flow field OF can be represented by a
combination of above three primary flows as:

OF = αVTX
+ βVTZ

+ γVR,

where α, β and γ are quantity coefficients.
Analogically, Prof. Helmholtz explained that the motion of a volume element

in 3D space consists of: 1) expansion or contraction, 2) rotation, and 3) trans-
lation. The expansion/contraction (radial flow field) can be represented as the
gradient of a scalar potential function because it is irrotational. The rotation
can be represented as the curl of a vector potential function since it is incom-
pressible. Translation, however, being neither compressible nor rotational can
be represented as either the gradient of a scalar potential, or the curl of a vec-
tor potential [10]. It is named by Helmholtz-Hodge Decomposition (HHD) [11].
According to HHD, any flow field in our work consists of two components:

1. Curl-free component representing divergence (radial flow) and translation
because they are irrotational.

θ = ∇ · OF = VTZ
+ VTX

2. Divergence-free component representing curl (rotation) and translation
because they are incompressible.

−→ω = ∇×OF = VTR
+ VTX

Go a step further, curl-free and divergence-free components can be expressed

as the curl of a vector potential
−→
W and the gradient of a scalar potential E,

OF = ∇E +∇×
−→
W. (10)
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where E(x) = − 1
4π

∫ θ(x′)
|x−x′|dx

′,
−→
W (x) = − 1

4π

∫ −→ω (x′)
|x−x′|dx

′, and x ∈ R
3. However,

θ and −→ω are what we expect. In reality, E and
−→
W are computed by energy

minimization,

minF (E) = min

∫

(OF −∇E)2, minG(
−→
W ) = min

∫

(OF −∇×
−→
W )2.

Theoretically speaking, HHD can decompose an arbitrary motion flow field

into curl-free component ∇E and divergence-free component ∇×
−→
W , no matter

it is coherent or not. But, we expect coherent potentials for approximating the
coherent flow field caused by camera motion, see Eq.(6). To ensure the coherence,
our work amended the conventional HHD by adding the first constraint: 1) piece-
wise smooth S. Meanwhile, we make an assumption Fin > Fout, and add the
second constraint: 2) global minimization at entire motion flow field Ω, which
ensures the optimization to minimize the inlier, other than the outliers.

arg min
S

F (E) = arg min
S

∫

Ω

(OF −∇E)2dΩ,

arg min
S

G(
−→
W ) = arg min

S

∫

Ω

(OF −∇×
−→
W )2dΩ.

(11)

Please see Fig.1(c) and (d), they are the divergence-free and curl-free poten-

tials respectively. Therefore, these two potential E and
−→
W could be our object:

coherent surfaces which can be formulated by low order polynomial P ′.

2.3 Incoherence map and incoherence labeling

Due to the global optimization and piece-wise smooth constraint, our amended
implementation keeps most coherent flow (95% ∼ 99%) into two potentials, but
definitely rejects incoherent flow F incoherent

in and F incoherent
out . Then, the majority

of outliers, motion discontinuities and noise, which are not decomposed into

∇E and ∇ ×
−→
W , will rest in a remainder. Please note that two potentials still

contain a small quantity of OFcoherent
out . They cannot be directly used for the

inlier estimation. Thus, we use this remainder to draw an Incoherence Map (IM)
to label incoherent flows in OF .

First, we estimate the coherent flow field presented in the curl-free and
divergence-free components by a linear combination as:

V = α(∇E) + β(∇×
−→
W ), (12)

where V ⊆ OF , α and β are quantity coefficients that indicate how much ∇E

and ∇×
−→
W are involved in OF . We use a distance to determine α and β.

dθ =

∫

|OF −∇E|

|OF|
, dω =

∫

|OF −∇×
−→
W |

|OF|
, (13)

where dθ represents the distance between the curl-free component and the optical
flow field, and dω represents the distance between the divergence-free component
and the optical flow field. Then, α and β are determined as following:
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– While dθ < 0.5 and dω > 0.5, it implies the optical flow looks more like a
radial flow field (curl-free component).

– While dθ > 0.5 and dω < 0.5, it implies the optical flow looks more like a
rotation field (divergence-free component).
Under above two cases,

α =
dθ

dθ + dω
, β =

dω
dθ + dω

.

– While dθ < 0.5 and dω < 0.5, it means both components are similar to the
optical flow, and implies a translation. Then,

α = 0.5, β = 0.5.

Afterwards, we can draw Incoherence Map from remainder by

IM = OF − α(∇E) − β(∇×
−→
W ). (14)

Please see Fig.1.(e), it clearly reveals the outliers, depth discontinuities and
computation error.

IM makes outliers and motion discontinuities labeling much easier. However,
Eq.(12) and Eq.(14) show that IM consists of a small portion of inlier as well. To
ensure the accurate labeling, we introduce a Progressive Quad-Tree Partition on
IM. The basic idea is that it partition IM into quadrants recursively if a quadrant
is not coherent. The partition is called by the following two conditions:

1. the variance of a sub-quadrant var(Ωi) is greater than t ∗ var(Ω);

2. the mean of a sub-quadrant mean(Ωi) is greater than mean(Ω).

where var and mean calculate the variance and mean of flow direction and
magnitude, respectively. t is a threshold. Ω is the entire IM. The condition 1 is
for detecting the motion discontinuities including the boundaries of outliers and
noise, where the flow value changes violently. The condition 2 is for detecting
outliers’ body, where the outliers’ flow differs from inlier’s flow because inlier
has been almost canceled by two potentials in IM. Partition performs until no
region can be split further. The smallest regions represent outliers, motion dis-
continuities and noise. The rest larger regions represent the coherent inlier, and
will be involved in inlier approximation in next section.

The threshold t determines how the Quad-Tree partitions IM. Since local
deformations usually vary on different IMs, it is rather difficult to find the best
partition using one threshold. We, therefore, define a set of thresholds in a de-
scending order, and introduce a progressive Quad-Tree partition. The t is initially
set to 1, and reduces with a step 0.05 for next partition. The procedure stops
when the difference between the current Quad-Tree QT ′ and the previous one
QT is less than a convergence value ε. The updated QT ′ is used for labeling
incoherence in IM. The pseudo-code is
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Data: IM
Result: Labeled incoherence
t = 1; QT = 0;
Split(Ω);
while |QT ′ −QT | > ε do

for each quadrant Ωi do
if var(Ωi) > t ∗ var(Ω) ‖ mean(Ωi) > mean(Ω) then

Split(Ωi);
Go to for loop;

end

end
Update QT ′ and QT ;
t = t− 0.05;

end
Mark all smallest blocks as incoherence;

Algorithm 1: Progressive Quad-Tree Partition

Figure 1.(f) shows the result of progressive Quad-Tree partition which effec-
tively labels outliers and depth discontinuities on IM.

2.4 Inlier estimation

Multi-parametric models had been conducted to recover the inlier [12]. They
were designed for camera motions ranging from simple translation to complex
perspective transformation. But, the limitation is that a prior knowledge of mo-
tion structure is required to select an appropriate model. Nevertheless, this prior
knowledge is not always available in real data. By contrast, we employ a general
solution, polynomial surface fitting, using d-order polynomial

P = ad0x
d + a0dy

d + · · ·+ aijx
iyj + · · ·+ a10x+ a01y + a00, (15)

to estimate inlier Fin from two potentials E and
−→
W . The advantage is that it

requires no prior knowledge.

It is known that high order terms in Eq.(15) present the high frequency
signals (incoherence: outliers, motion discontinuities and noise in this work).
Thanks to IM and algorithm 1, the incoherence has been labeled and rejected in
process afterwards. As explained in Eq.(6) and Eq.(11), our object is to find low
order polynomial P ′ which expresses the coherent inlier. The inlier estimation,
eventually, can be performed by sampling the rest flows on two potentials E

and
−→
W . Since outliers and noise are completely excluded, surface fitting utilizes

nearby samples to approximate the inlier. Thus, the result is rather coherent with
the camera motion. For motion discontinuities, surface fitting interpolates the
samples at both sides of discontinuity to approximate the violent flow change.
So, the result also presents the trend of rapid flow change. But the gradient of
the change becomes less than the one on original OF . In our work, a polynomial

of d = 5 is employed to produce coherent and accurate potentials E′ and
−→
W ′
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Fig. 2. (a) The outliers map from Eq.(17). The flow discontinuities have become very
weak. (b) The potential of outliers. (c) The labeled outliers.

using the samples after rejecting incoherence. The final inlier is estimated by a
linear combination where α, β have been determined in section 2.3,

F ′
in = α∇E′ + β∇×

−→
W ′. (16)

Figure 1.(g) shows the estimated inlier. It demonstrates that our method approx-
imates the inlier rather coherent, and the outliers have been excluded effectively.

3 Outliers detection

With estimated inlier, outliers Fout can be detected directly by subtracting the
F ′

in from the original optical flow OF ,

Fout
∼= OF −F ′

in. (17)

Please see Fig.2.(a). However, low order polynomial surface fitting has a defect
that it better fits the data with dense samples but goes wild at the edges of the
original domainΩ due to lack of adequate samples. To reduce the error, the result
is filtered by the mean-curvature of the original potential. The final segmentation
is obtained subsequently by assigning binary labels on the true outliers. We will
use the segmentation result to evaluate the performance of proposed method in
experiments. Figure 2.(c) and (b) show the detected outliers and their potentials,
respectively. Figure 1.(h) shows the 3D segmentation result.

4 Experiments

The performance of proposed method is evaluated on four benchmark datasets:
Hopkins [13], Berkeley Motion Segmentation [5], Complex Background [4], and
SegTrack [14]. The Hopkins dataset contains video sequences along with the
features extracted and tracked in all the frames, which has three categories:
checkerboard, car, and people sequences. Since checkerboard sequences do not
correspond to natural scenes. We just use one sequence (1R2TCR) to show the ef-
fectiveness of our method in dealing with cameras rotation. The Berkeley dataset
is derived from the Hopkins dataset, which consists of 26 moving camera videos:
car, people, and Marple sequences. This dataset has full pixel-level annotations
on multiple objects for a few frames sampled throughout the video. Since Marple
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Fig. 3. (a) Cars2 sequence. (b) The original optical flow. Camera motion is translation.
(c), (d) Two potentials of E and W . (e) IM. (f) Progressive Quad-Tree Partition on
IM. (g) The estimated inlier. (h) Segmentation result.

sequences mainly contain static scenes or the objects are static, it is little chal-
lenging for our method. Thus, they are not involved in the experiments. Complex
Background and SegTrack datasets contain extremely challenging scenes, where
the background motion is much more complex than other datasets. They also
provide full pixel-level annotations on multiple objects at each frame within
each video. These two datasets are employed to highlight the advantage of our
method.

We first illustrate the performance of the proposed method on three sequences
that consist of camera translation, rotation and zoom in/out, respectively. Then
we compare our method with state-of-the-art [4] on all four datasets. Optical
flow is calculated using Brox’s method [15] and optimized by [16].

4.1 Performance on three typical sequences

We demonstrate the performance of our method on three typical sequences:cars2,
1R2TCR, and drive that involve varied camera motions.

[1] Cars2 Sequence: This sequence is from the Berkeley dataset. Three
cars are translating in the scene. The camera is translating too, please see Fig.3.

[2] 1R2TCR-Checkerboard Sequence: This data is from the Hopkins
dataset. The basket is rotating, and the box is translating from left to the right.
The camera is rotating, please see Fig.4.

[3] Drive sequence: This sequence is from the Complex Background dataset.
A car is turning to left at the corner. The camera is zooming in, please see Fig.5.

For more examples, please refer the supplemental material.

4.2 Comparison with state-of-the-art

The proposed method is compared with the latest dense motion field based
approach [4], which present two versions: (1) FOF, which uses optical flow in-
formation only, and (2) FOF+color+prior, which combines optical flow, color
appearance and a prior model to improve the accuracy. We reported the F-
measure of ours, FOF and FOF+color+prior presented in their paper in Table
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Fig. 4. 1R2TCR sequence. Please refer to Fig.3 for the description of subfigures.
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Fig. 5. Drive sequence. Please refer to Fig.3 for the description of subfigures.

1. F-measure is employed because it considers both the precision Pr and the
recall Rc of the test to compute the score as [17]:

F =
2×Rc × Pr

Rc + Pr

.

Table 1 shows that our method outperform FOF and FOF+color+prior on
almost all videos: it raises the F-measure by 10% – 30% on Cars 2, 3, 4, 7, and
People 1 sequence in the Berkely dataset; around 10% on the drive, parking, and
store sequences in the Complex Background dataset; and more than 20% on
the parachutte and monkeydog sequences in the SegTrack dataset. This result is
quite appealing even on videos containing extremely challenging scenes, such as
the ones with occlusions, complex backgrounds, and noises. A few other results
are shown in Fig.6, where the last column is the ground truth. In most cases,
our segmentation agrees with the ground truth more than existing methods.

Other relevant works are Ochs et al.[6], Elqursh and Elgammal[7] and Kwak
et al.[8]. These methods analysis trajectories using multiple frames, and some
also need special initialization at the first frame. Thus, they are not directly
comparable to inlier and outliers accuracy measure. Both our method and FOF
are based on optical flow, and a frame-to-frame method requiring neither initial-
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Table 1. F-measures of FOF method [4], and ours.

Sequences FOF FOF+color Our Sequences FOF FOF+color Our

Cars1 47.81 50.84 76.38 drive 30.13 61.80 83.03

Cars2 46.37 56.60 83.23 forest 19.48 31.44 35.81

Cars3 67.18 73.57 87.47 parking 43.47 73.19 83.57

Cars4 38.51 47.96 84.52 store 28.46 70.74 80.10

Cars5 64.85 70.94 84.92 traffic 66.08 71.24 71.77

Cars6 78.09 84.34 85.81 ————— ——– ————— ———
Cars7 37.63 42.92 86.10 birdfall2 68.68 75.69 76.23

Cars8 87.13 87.61 90.78 girl 75.73 81.95 78.06
Cars9 68.99 66.38 77.52 parachute 51.49 54.36 86.72

Cars10 53.98 50.84 54.93 cheetah 12.68 22.31 55.77

People1 56.76 69.53 80.14 penguin 14.74 20.71 21.71

People2 85.35 88.40 89.91 monkeydog 10.79 18.62 45.45

ization nor prior knowledge. Therefore, we only compare our method with FOF
in this paper only.

Although, the proposed method achieves inspiring performance, extensive
experiences shows it may fail in the following cases:

– Motions of moving objects are very weak comparing with the camera motion.
In this case, the outliers are more likely to be decomposed by HHD because
they are pretty coherent with the inlier, and can not appear in IM. Such
as the cars 1, 9 and 10 sequences and forest contain some objects’ motions
which are very small.

– A few isolated static objects stand alone in a texture-free background while
camera is moving. In this case, our method may mistake these isolated static
objects as moving objects.

– The outlier is greater than inlier. In this case, HHD fails to decompose the
inlier because of the global minimization.

We have to point out that the accuracy of the optical flow affects the performance
of our method as well. The girl sequence shows such an example. It captures a
fast running girl in the sports yard. Some frames are blurred terribly, and have
severe noisy optical flows. In this case, only optical flow is not sufficient. That’s
why FOF+color+prior utilizes additional information (color appearance) and
prior models to improve the performance. In addition, both methods appear less
accurate on the three sequences (cheetah, penguin, monkeydog) in the SegTrack
dataset. The reason is they have multiple moving objects, but the ground truth
intended for tracking one primary object as the foreground, causing all methods
appear less accurate.

5 Conclusions

We have presented a general framework for 3D motion segmentation on a wide
bank of moving camera videos. This framework solved two problems: 1) the
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(a) (b) (c) (d) (e)

Fig. 6. Segmentation results of FOF, FOF-color and ours on challenging scenes: (a)
input sequences, from top to bottom: cars2, people2, forest, store, parachute, traffic,
(b) FOF, (c) FOF+color+prior, (d) our segmentation, (e) ground-truth segmentation.

amended HHD can handle the coherent inlier of all three primary motion flows
(translation, rotation, and radial flow), 2) the proposed Incoherence Map and
progressive Quad-Tree precisely label the outliers, motion discontinuities and
noise. The afterward inlier estimation is achieved by approximating low order
polynomials using the rest samples on two potentials in HHD. This compensates
the depth discontinuity in the 3D motion. We have evaluated our approach on
four benchmark datasets. Extensive experiments showed a rather comparable
performance than state-of-the-art. In the future work, more coherent information
(e.g. colors, the direction only) might further help our method for segmentation.
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